Solution to Assignment 7

Supplementary Problems

1. Let φ be a continuous map from [0, 1] to itself. Use elementary arguments to show that it must admit one fixed point.

Solution. This is clear from the graph. In any case, if $\varphi(0) = 0$, then 0 is a fixed point. So assume $\varphi(0) > 0$. Let $f(x) = \varphi(x) - x$. We have $f(0) > 0$ and $f(1) = \varphi(1) - 1 \le 0$. If $f(1) = 0$, then 1 is a fixed point. We may assume $f(1) < 0$. Now we are facing the situation $f(0) > 0$ and $f(1) < 0$. By continuity, there must some $z \in (0,1)$ such that $f(z) = 0$. In other words, z is a fixed point for φ .

2. A region is homeomorphic to the ball if there is a continuous map maps it one-to-one onto the ball. Show that a continuous map from a region homeomorphic to the call to the region itself has a fixed point.

Solution. Let $\Phi: D \to B$ be a homemorphism and let $F: D \to D$ be continuous. The composite function $\Phi \circ F \circ \Phi^{-1}$ is a continuous map from B to B. By Brouwer's fixed point theorem there is some z such that $\Phi \circ F \circ \Phi^{-1}(z) = z$. But then $F \circ \Phi^{-1}(z) = \Phi^{-1}(z)$, so $\Phi^{-1}(z)$ is a fixed point for F.

3. Take a map of CUHK and make a copy of it with one tenth size. Then put the shrunk copy on top of the original map in an arbitrary manner. Show that there is a spot at which two maps coincide.

Solution. The correspondence between the map and its shrunk version is a continuous map, first by a similar transformation and then follow by a translation and a rotation.

4. Find a parametric curve $\gamma(t)$, $t \in [0, 1]$, which describes the triangle with vertices at $(0, 0), (2, 0)$ and $(2, 5)$ in anticlockwise direction.

Solution. The three sides of the triangle are given by

$$
\gamma_1(t) = (t, 0), \ t \in [0, 2];
$$

$$
\gamma_2(t) = (2, t), \ t \in [0, 5]
$$

and

$$
\gamma_3(t) = (1-t)(2,5) \, , t \in [0,1) \, .
$$

Now, we rescale γ_1 so that it is on $[0, 1/3]$ by $\gamma_1'(t) = (6t, 0)$. Recale γ_2 so that it is on [1/3, 2/3] by $\gamma_2'(t) = (2, 15t - 5), t \in [1/3, 2/3]$ and γ_3 to be on [2/3, 1], that is, $\gamma_3'(t) = 3(1-t)(2,5), t \in [2/3,1].$ Then $\gamma = \gamma_1' + \gamma_2' + \gamma_3'$ is our desired curve. Note the solution is not unique.

5. Find the arc-length parametrization of the line segment $y = ax + b$, $x \in [0,2]$.

Solution. Let the line segment be $C(t) = (t, at + b), t \in [0,2]$. Then $s = \psi(t) =$ $\int_0^t |C'(t)| dt =$ $\sqrt{1+m^2}$ t. Therefore, $t = \varphi(s) = \frac{s}{\sqrt{s}}$ $1 + m^2$. The arc-length parametric curve is

$$
\tilde{C}(s) = (s, ms + \sqrt{1 + m^2})/\sqrt{1 + m^2}, \ s \in [0, 2\sqrt{1 + m^2}]
$$